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Abstract— The agriculture wastes are attracted to produce required form environmental friendly energy and efficient burning of these 
required optimized characteristic temperature contours in the fluidized bed. To study the effect of the different characteristic behavior of the 
fluidized bed combustor (FBC) with the temperature profile to maximize the heat release rate of the unburned hydrocarbons of the biomass 
particles (UBP) in the free board region, set up an experiment with the 2.5 m height and 0.1 m diameter laboratory FBC model with 8 axial 
strategic point thermocouples (T1-T8). The FBC was configured with 4 sets of angular fixtures (90o,60o,45o and 30o) for pressurized 
secondary air radial and tangential injection. By the experimental observation for Sawdust, Baggase and Ricehusk burning, the 30o angle 
tangential secondary air injection with any pressure between 1.2 and 3.5 bar created optimized vorticity effect to release more heat as 
compared radial air injection (90o) in the free board region of the FBC. The 3.5 bar secondary air injection operations were created 
favorable characterized vorticity and turbulence effects for efficient burning of UBP and more heat transfer between bed material and 
biomass particles in the free board region. Sawdust burning has more benefit at 3.5 bar vorticity effect in the free board region.  

Index Terms— Fluidised Bed, Biomass, Temperature,  Agriculture wastes, Vorticity, Natural energy sources,  Air injection pressure.   

——————————      —————————— 

1 INTRODUCTION                                                                     

IOMASS can be used as an energy resource and can be 
converted into heat or other form of chemical energy by 
thermal, physical and biological processes [3-8]. The bio-

mass gasification in the fluidized bed has been attracted the 
society because of its high energy conversion efficiency with 
less harmful emissions [5-11]. The biomass energy available in 
the agriculture and forest waste was estimated approximately 
400 EJ/year, therefore these kind of energy resources are at-
tracted to produce required form environmental friendly 
energy [10-22]. Hence the farming and genetic modification of 
such energies (200-300 EJ/year) resources was prime impor-
tance as concerned to the society and environment. The flui-
dized bed burning of biomass is one of the proven methodol-
ogies for more efficient heat transfer with many flexible para-
meters to study towards pollution free energy conversion [10-
17]. Many researchers made their efforts to suggest most suit-
able optimized operation of the fluidized bed combustion or 
pyrolysis of the different kind of wastes [23-25] and some 
were studied the different characterized effects, temperature 
profile and operating parameters to burn biomasses in the 
fluidized bed and release more heat for application [1,2].    

2   EXPERIMENTAL APPROACH 
The temperature distribution contours within the fluidized 
bed combustor (FBC) affects the burning of the biomasses and 
it was felt necessary to construct an experimental set up to 
study the temperature profile. In the view of this, the 2.5 m 
height and 0.1 m diameter laboratory FBC model was de-
signed by using the equations (3) and (4) from the literature [9-
21] with the biomass screw feeding arrangement with flow 
rate regulating valve V3 as shown in Fig.1, 0.4 m from the bot-
tom of FBC. The TDH and H were taken as the literature sug-

gested for equation (3) and (4) between 1.2 < H
Hmf

< 1.4, and as-
sumed 1.3 for design. The thermocouple T1 was instrumented 
to indicate the temperature immediately after the orifice meter 
and air distributor when the fluidization will initiate. Similarly 
T2 was to indicate the temperature immediately after entering 
of the biomass and start ignition, T3 to T5 were to indicate 
fluidization axial temperatures. The T6 thermocouple was in-
strumented to note the temperature in the section A-A of Fig.1 
and T7 and T8 were to indicate the temperatures in free board 
region of the FBC. All the thermocouples mentioned in the 
Table 2 (T1 to T8) were calibrated to provide digital display.  

Um = dp
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                 ….. (2) 

H
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= 1 +
10.978(Uf−Umf  )0.738 ρP

0.376 dP
1.006

Umf ρf
0.126    ….. (3) 

Ht = TDH + H                                       ….. (4) 

The blower of capacity as shown in Table 3 has been installed 
to supply primary fluidization air at the bottom and second-
ary air to the free board region section A-A of the FBC and 
valves V1 and V2 were incorporated to regulate secondary and 
primary airs’ supply respectively as shown in the Fig.1.  
 
The air compressor as specified in the Table 2, was provided at 
the secondary air line between air blower and section A-A of 
FBC to supply pressurized air to the free board region and 
regulator and analog gauge were also incorporated to regulate 
and monitor the required air pressure. As the agriculture 
waste was natural energy resource to burn for less pollution in 

B IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016                                                                                        869 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org  

the exhaust, selected three biomasses (Ricehusk, Baggase and 
Sawdust) from the field, and their characteristics were studied 
in the published literature [1-17] as shown in the Table 1 and 
were used for calculation and analysis. The 20 % volume of 
the FBC was filled by the fluidizing bed material (Alumina 
Sand) as specified in the Table 2 from the studied literatures 
[3-17].  
 
 

Table 1: Characteristics of Biomasses and Alumina Sand 
    Characte-

ristic 
Rice-
husk Baggase Sawdust Alumina 

Sand 
Moisture in % 10.6 12.3 10.4 - 
Porosity 0.64 0.8 0.5 0.46 
Mean Particle 
Size in µm - - - 342 

Sphericity 0.49 0.49 0.49 - 
Bulk Density 
in Kg/m3 

375-
410 300-325 310-330 1582 

LHV in 
MJ/kg 17.62 18.12 19.8 - 

Volatile mat-
ter in % 78.6 71.5 44.1 - 

Fixed Carbon 
in % 16.82 16.6 36 - 

Ash in % 3.72 2.8 4.3 - 
S in % 0.13 0.2 0.34 - 

 
The fluidization and terminal velocities of the Alumina Sand 
and biomasses were calculated from equations (1) and (2) re-
ferred from the literatures reviewed [1-13] and got 0.46 m/s 
minimum fluidization velocity and 0.7 m/s terminal velocity. 
After the dry run of an experimental set up for fluidization of 
sand and biomass particles, the better result was obtained 
with 0.7 m/s velocity and it was selected for all the experi-
ments for primary air supply. An arrangement to set characte-
rized vorticity in the free board region (A-A horizontal sec-
tion) of the FBC, one set of radial (90o angle) and 3 sets of tan-
gential (30o, 45o and 60o), were designed to inject the second-
ary air from compressor to the section A-A as shown in Fig.2. 

 
Fig. 1: Schematic diagram of Experimental Set-up 

 
The heating coil arrangement has been made to heat the pri-
mary to initial ignition temperature with dimmer stat to regu-
late current and voltage for required temperature as in Fig.1. 
For initial experiment 90o angle air injection with Sawdust 
biomass burning operation was arranged. The biomasses 
samples were collected from the nearby field and dried them 
over night in the dryer with 50oC and chopped them to conve-
nient size and shape. The blower was started and set primary 
air velocity to 0.7 m/s with the help of valve V2 as in Fig.1 and 
observes the fluidization of the bed material for stability and 
streamlined operation. 
 
Table 2: Detailed Specifications of experimental set up parts 

Part Description 

Air Compres-
sor 

Dual Cylinder, Max. 4 bar auto stop, 
Outflow: 35 LPM 

Blower Supply: 12 V DC, Centrifugal, 64 m3/h 

Thermocouples Type K, Temperature Range:0-1260oC, 
Ref. Junction: 0oC, Tolerance: ±2.2 or 
±0.75% 

 
The ignition temperature was set to 500 to 550oC with the help 
of dimmer stat of the primary air heater and ran whole expe-
rimental system for 20 minutes. After the stable condition of 
the set up was reached, gradually the Sawdust feeding was 
started with the help of valve V3 and screw feeder and ram-
mer. The secondary air supply was started by operating the 
valve V1 to the compressor and then the pressure was regu-
lated 1.2 bar for initial experiment. 
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Fig. 2: Schematic Sketch of sectional view A-A for air injec-

tion fixtures 
 
The whole experimental set up was allowed to run for 20 to 25 
minutes for stable condition and then recorded all the thermo-
couples T1 to T8. Similarly next experiment was conducted by 
increasing the secondary air injection pressure to 2 bar with 
the help of valve V1 for same Sawdust biomass burning and 
recorded all thermocouple readings and in the similar way 
conducted the experiments for supplying secondary air with  
2.5, 3 and 3.5 bar pressure in the free board region (A-A) of the 
FBC. The same experimental procedure has been followed for 
Ricehusk and Baggase biomasses.     

3 RESULTS AND DISCUSSIONS 
For the discussions, the chemical reactions of bed material 
with the biomasses and the effect of initial volatile matter and 
ash content of the biomasses were taken as constant. Also the 
fluidization velocities of the biomasses were taken constant 
and single value. It is observed from the Fig.3 and Fig.4, the 
temperature of the gas and biomass particles within the FBC 
was increasing along the vertical height of the reactor and it 
was increasing with more intensity in case of 30o angle sec-
ondary air injection operation in the free board region. With 
the same trend maximum ranges (for 1.2 bar: 712-981oC to for 
3.5 bar: 741-998oC) of temperatures were found while the sec-
ondary air injection pressure increases from 1.2 to 3.5 bar as 
observed in the Fig.1. These were due to the more release of 
heat by the effect of vorticity created by the 30o angle air injec-
tion at the section A-A of FBC facilitate more residence time to 
the unburned biomass particles (UBP) for enhancement of 
burning rate.  
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Fig. 3: Effect of secondary air pressure (1.2 and 2.5 bar) on 
axial temperature 

 
In the similar way the FBC operation with 90o angle secondary 
air injection with the pressure from 1.2 to 3.5 bar release least 
heat with less temperature ranges (for 1.2 bar: 621-723oC to for 
3.5 bar: 661-735oC). Therefore the FBC operation with low 
pressure (1.2 bar) secondary air injection in the freeboard re-
gion characterize the vorticity  to lower expose of UBP surfac-
es to the secondary air to release less heat for applications, 
whereas 3.5 bar operation characterize for highest heat release.  
The 3.5 bar secondary air injection also increases the heat 
transfer rate between the bed material and biomass particles 
for rich burning to release more heat in all the section of the 
FBC as observed axial temperature profiles in the Fig. 3 and 4. 
The rich burning of the UBP in the free board region due to 
vorticity effect as explained above, release more heat, then the 
density of gases will decrease, so axial buoyancy force will 
exist to drag UBP and sand particles in the bottom of the FBC 
and this enhances heat transfer efficiency with more mass flow 
rates of the fluids within the reactor.It was observed in the 
experiments, the high pressure (3.5 bar) secondary air injection 
flush the ash, residue and exhaust gas with high rate as com-

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016                                                                                        871 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org  

pared to lower pressure (1.2 to 2.5 bar) operations of the FBC 
and this may help to set streamlined current of the fluidiza-
tion.  
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Fig. 4: Effect of secondary air pressure (2 and 3.5 bar) on axial 
temperature 

 
The characteristic behaviors of the FBC were clearly empha-
sized, the burning of Sawdust indicating highest temperature 
profile, whereas for Baggase lowest for all angle fixture of sec-
ondary air injection in the free board region. This was due to 
Sawdust biomass particles has more LHV (19.8 MJ/kg) as 
compared to Baggase biomass particles (18.12 MJ/kg) as 
shown in the Table 1, because of this, the Sawdust particles 
add more heat with the 30o air angle characterized vorticity in 
the free board region of the FBC.  
 
Baggase particles has more porosity (0.8), volatile matter 
(71.5%) and less fixed carbon (36%) than the Sawdust (porosi-
ty: 0.5, volatile matter: 44.1% and fixed carbon: 16.6%), there-
fore sudden burning and vaporizing of volatile matter will 
make Baggase more particles more dense and porosity in the 
axial fluidization of FBC, in the meanwhile Sawdust more be-
nefitted by the effect of high pressurized vorticity in the free 
board region to release more heat for highest axial tempera-
ture profile. The low moisture content of the Sawdust (10.4%) 

and lower angle (30o) with high pressure (3.5 bar) secondary 
air injection in the free board region of the FBC advantages 
towards rich burning to disintegrate more heat of higher tem-
perature profile. It is observed from the Fig. 3 and 4, as the 
pressure of the secondary air increases from 1.2 bar to 3.5 bar, 
the stability of the temperature profile decreases along the 
vertical height of the FBC reactor and it is pointed more from 
1.5m to 2.3m height. This is because the biomass feeding with 
sudden burning and turbulence added by the vorticity effect 
of secondary air injection at the freeboard region at A-A sec-
tion of FBC falls between 1.5 to 2.3 m height.  
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Fig. 4: Effect of secondary air angle injection on averaged 
axial temperature 

 
It is also observed from the Fig.5, the average temperature 
profile of pressures between 1.2 and 3.5 bar indicating same 
effects as explained in the above for any angle (30o, 45o, 60o 
and 90o)   secondary air injection in the free broad region of the 
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FBC. The operations of FBC with lower angles’ (30o and 45o) 
air injection in the free board region creates temperature con-
tours almost linear increasing up to the 1.5 m height and then 
slow and steady increase in the contours.   

4 NOMENCLATURES 
Hmf: Minimum Fluidization Height of the FBC 
Ht: Overall Height of the FBC 
H: Expanded or Complete Height of the FBC 
Um: Minimum Fluidization Velocity 
Ø: Sphericity of the particle 
ε: Porosity of the particle 
μ: Dynamic viscosity at the operating temperatures ( Approx: 
700oC and 101.32 KPa) 
ρsand: Density  of sand particle in Kg/m3 

ρair: Density of air in Kg/m3 

dp: Mean diameter of the fluid particles in meter 
Ut: Terminal velocity of the bed material in m/s 
g: Acceleration due gravity of the particles in m/s2 

5 CONCLUSIONS 
• The 30o angle tangential secondary air injection with any 

pressure between 1.2 and 3.5 bar created optimized vor-
ticity effect to release more heat as compared radial air 
injection (90o) in the free board region of the FBC irres-
pective of any biomasses (Sawdust, Baggase and Rice-
husk) burning.  

 
• The high pressure (3.5 bar) secondary air injection opera-

tions of FBC were created favorable characterized vortici-
ty and turbulence effects for efficient burning of un-
burned biomass particles (UBP) and more heat transfer 
between bed material and biomass particles in the free 
board region and also to produce streamlined current of 
the fluidization.  

 
• Sawdust biomass has more benefit with the high pressu-

rized (3.5 bar) vorticity effect in the free board region to 
release more heat for highest axial temperature profile. 
Whereas for Baggase lowest for all angle fixture of sec-
ondary air injection. 

 
• The low moisture content of the Sawdust (10.4%) and 

lower angle (30o) with high pressure (3.5 bar) secondary 
air injection in the free board region of the FBC was ad-
vantages towards rich burning to disintegrate more heat 
of higher temperature profile.  
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